Second critical exponent and life span for pseudo-parabolic equation
نویسندگان
چکیده
منابع مشابه
Critical exponent of the fractional Langevin equation.
We investigate the dynamical phase diagram of the fractional Langevin equation and show that critical exponents mark dynamical transitions in the behavior of the system. For a free and harmonically bound particle the critical exponent alpha(c)=0.402+/-0.002 marks a transition to a nonmonotonic underdamped phase. The critical exponent alpha(R)=0.441... marks a transition to a resonance phase, wh...
متن کاملThe Critical Exponent of Doubly Singular Parabolic Equations
In this paper we study the Cauchy problem of doubly singular parabolic equations ut = div ∇u σ ∇um + t x u with non-negative initial data. Here −1 < σ ≤ 0, m > max 0 1 − σ − σ + 2 /N satisfying 0 < σ +m ≤ 1, p > 1, and s ≥ 0. We prove that if θ > max − σ + 2 , 1 + s N 1 − σ − m − σ + 2 , then pc = σ +m + σ +m− 1 s + σ + 2 1+ s + θ /N > 1 is the critical exponent; i.e, if 1 < p ≤ pc then every n...
متن کاملCritical Exponent for a Nonlinear Wave Equation with Damping
It is well known that if the damping is missing, the critical exponent for the nonlinear wave equation gu=|u| p is the positive root p0(n) of the equation (n&1) p&(n+1) p&2=0, where n 2 is the space dimension (for p0(1)= , see Sideris [14]). The proof of this fact, known as Strauss' conjecture [17], took more than 20 years of effort, beginning with Glassey doi:10.1006 jdeq.2000.3933, available ...
متن کاملControl Problems Governed by a Pseudo - Parabolic Partial Differential Equation
Let G be a bounded domain in R" and Q = G X (0, T). We consider the solution^«) of the pseudo-parabolic initial-value problem (1 + M(x))y,(u) + L(x)y(u) = u in L2(Q), y(-,0;u) = 0 in L2(G), to be the state corresponding to the control u. Here M(x) and L{x) are symmetric uniformly strongly elliptic second-order partial differential operators. The control problem is to find a control un in a fixe...
متن کاملCritical Exponents for a Semilinear Parabolic Equation with Variable Reaction
In this paper we study the blow-up phenomenon for nonnegative solutions to the following parabolic problem: ut(x, t) = ∆u(x, t) + (u(x, t)) , in Ω× (0, T ), where 0 < p− = min p ≤ p(x) ≤ max p = p+ is a smooth bounded function. After discussing existence and uniqueness we characterize the critical exponents for this problem. We prove that there are solutions with blow-up in finite time if and o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2012
ISSN: 0022-0396
DOI: 10.1016/j.jde.2012.09.001